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An algorithm to find a K 5 minor

Patrick J. McGuinness and Andr6 E. Kdzdy

Abstract

We present an 0(n 2) algorithm that, given a graph, either returns a

K, minor or reports that no such minor exists. The algorithm exploits

a characterization of graphs containing no K5 minor that is similar to

Wagner's characterization.
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1 Introduction

Kuratowski's Theorem states that a graph is planar if and only if it does not contain a homeomorph

of K 3,3 or Ks. For this reason, homeomorphs of either K 3,3 or Ks are called Kuratowski home-

omorphs. Because of the connection with planarity, there has been much interest in algorithms

that find Kuratowski homeomorphs in non-planar graphs. Determining whether a graph contains

a Kuratowski homeomorph can be solved in linear time by well-known planarity testing algorithms

[HT74]. Williamson [Wil84] provided a linear-time algorithm to extract a Kuratowski homeomorph

from a non-planar graph. Asano [Asa85] (see also Kaschube [Kas84]) provided a linear-time algo-

rithm to test whether a graph contains a homeomorph of K3,3. Fellows and Kaschube [FP] have

obtained a linear algorithm that constructs a K 3 ,3 homeomorph when one is present. Khuller et al.

[KMV89] describe parallel algorithms to find Kuratowski homeomorphs and K3,3 homeomorphs,

when such homeomorphs are present.

Extending Kuratowski's result, Wagner showed that a graph is planar if and only if it does

not contain a K5 minor or K 3,3 minor [Wag37a]. Robertson and Seymour [RS86] (see also [RS851)

have shown that, for any fixed graph H, there exists an O(n 3 ) algorithm that determines whether

a graph contains a minor isomorphic to H. Moreover, they have shown that there are polynomial-

time algorithms for the fixed subgraph-homeomorphism problem; that is, there are polynomial time

algorithms testing whether a graph contains a subgraph homeomorphic to a fixed graph. However,

their algorithms contain large constants and so are far from practical.

This paper describes an algorithm that determines whether a graph contains a minor isomor-

phic to Ks, and constructs such a minor, if it exists, in O(n 2) time. This algorithm complements

the result by Asano for obtaining a K3.3 homeomorph. The algorithm is also the first practical

polynomial-time algorithm for finding a (non-trivial) minor in a graph, and so provides an indi-

cation that the work by Robertson and Seymour may indeed lead to practical polynomial-time

algorithms for graph minors.

In section three, we prove a structural characterization of graphs that do not have a Ks

minor. This characterization is similar to a characterization of Wagner [Wag37b]. We show that, to

characterize graphs without a K5 minor, it suffices to consider 3-connected, non-planar graphs with
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at most 3n - 6 edges; these graphs must contain a K 3,3 homeomorph. The main structural result

is that in any 3-connected graph G containing a K 3,3 homeomorph at least one of the following

must hold: 1) G contains a Ks minor, 2) G is isomorphic to an 8-cycle with crossing chords,

or 3) the red branch (blue branch) vertices of the K 3,3 homeomorph are a 3-cut that divides

the blue branch (red branch) vertices into 3 separate components. In section four, we present

the algorithm. The algorithm first recursively decomposes the graph into its (augmented) three-

connected components. Then the algorithm applies Williamson's linear-time algorithm [Wil84] on

these components to test for planarity and construct a Kuratowski homeomorph in any non-planar

graph. If Williamson's algorithm returns a K 3,3 homeomorph, then either the graph has a K5 minor,

or the graph is isomorphic to W. or we are able to recursively apply the algorithm on the augmented

components induced by the 3-cut in the K3,3 homeomorph. We obtain the representation of the

Ks minor by attaching appropriate paths to the K 3,3 homeomorph; the methods in the proofs of

the structural results are applied to obtain these paths. Before presenting these results, we first

present preliminary notation and definitions.

2 Preliminaries

Let G be an undirected simple graph with vertex set V = V(G) and edge set E = E(G) with

cardinalities n and m, respectively. Let e = zy denote the edge between the two vertices z and

y. An elementary subdivision of G is a graph obtained from G by removing some edge e = zy

and adding a new vertex z together with two new edges zz and zy. A homeomorph of G is a

graph obtained from G by a succession of elementary subdivisions. In the literature, homeomorphs

are also called subdivisions. Additionally, a graph H is a topological subgraph of G if G contains

a homeomorph of H. Two graphs are homeomorphic if they are both homeomorphs of the same

graph. A contraction of an edge e = uv in G (denoted G/uv) is made by identifying vertices u and

v with a new vertex whose neighborhood is the union of the neighborhoods of u and v (resulting

multiple edges and loops are deleted). A graph H is a minor of G if a graph isomorphic to H if

H can be obtained from G by a series of vertex deletions, edge deletions, and edge contractions.

Observe that the minor order is transitive; that is, if G, is a minor of G2, and G 2 is a minor of G3 ,
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then GI is a minor of G3. Note also that, if G contains a homeomorph of H, then H is a minor of

G.

Suppose G contains a minor isomorphic to H. We associate with each vertex v of H a set,

called the branch set of v, which consists of those vertices of G that have been merged by edge

contractions to form the vertex v. Observe that the branch sets depend both upon the choice of

edge deletions, vertex deletions, and edge contractions used to obtain the minor, and upon the

isomorphism between H and the minor of G. To describe a minor explicitly, it suffices to present

the branch sets and the isomorphism. Such a presentation is called a model of the minor H in G.

In the case that H is a complete graph, any bijection between the vertex set of H and the collection

of branch sets produces an isomorphism, so we shall ignore the isomorphism.

For any S C V(G), G[S] denotes the subgraph of G induced by S. A set S C V(G) is a

k-cut if G - S is disconnected and 1S1 = k. A k-cut S of G is strong if G - S has more than two

components. A graph with at least k vertices is k-connected if it has no (k - 1)-cut. A k-connected

component of G is a maximal k-connected subgraph of G. In this paper, W denotes an 8-cycle

with crossing chords (see Figure 1). The neighborhood of a vertex v in G, denoted NG(v), is the

set of vertices in G adjacent to v; dG(v) = ING(v) is the degree of v. Suppose H is a graph wi~h

minimum degree at least three, and G is a homeomorph of H. The vertices of G with degree at

least three are called branch vertices. The interior vertices of a path P.. between a and z are the

vertices in V(Pa,,) - {a, z}. Given a set S C V(G), a path in G is an outside path of S if every one

of it is interior vertices is contained in V(G - S). Suppose P is a path connecting to vertices u and

v. Contracting u to v along P means contract the edges of P between u and v.

3 Structural results

In this section, we characterize graphs that do not contain a K5 minor. Because plagar graphs do

not contain a Ks minor, we need only consider non-planar graphs. The following theorem shows

that we may further restrict our attention to graphs with at most 3n - 6 edges. See Gyori [Gy82]

for another proof of this and related results.
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Theorem 1 If G has at least 3n - 5 edges, then G contains a K% minor.

Proof: The proof is an induction on n = IV(G)I. The only graph with n = 5 vertices and at least

3n-5 edges is KS; this provides the basis for the induction. Suppose n > 5 and m = IE(G)I 3n-5.

Let v be any vertex of G. If GCN(v)] has minimum degree three then, by a result of Dirac

[Dir60], G[N(v)] contains a K4 minor which together with v produces a K 5 minor in G. Hence we

may assume there is a vertex u E N(v) with at most two neighbors in N(v). Contract the edge

uv to form G' = G/u, with m' = IE(G9)l and n' = IV(G') = n - 1. Now m' > m - 3, since u

has at most two neighbors in N(v). Therefore, m' > 3n - 8 = 3n' - 5 and we apply the inductive

hypothesis to conclude that G' contains a Ks minor. The transitivity of the minor order implies

that G also contains a Ks minor. 3

The proof of Theorem 1 yields an 0(n 2) algorithm that constructs a K5 minor in any graph

G with at least 3n - 5 edges. Select an arbitrary vertex v E G and examine its neighborhood. If

G[N(v)] has minimum degree at least three, then an 0(n) algorithm by Asano [Asa85] (see also

[LG80]) finds a K4 homeomorph in G[N(v)] which together with v produces the desired KS minor.

Otherwise, select a vertex u E N(v) with at most two neighbors in N(v). Contract uv and continue

on the resulting smaller graph. There are at most n iterations each requiring 0(n) time, so the

algorithm requires 0(n 2 ) time in the worst case.

Let G be a graph with a cutset C C V(G). A branch set of some minor of G crosses C if

it contains vertices in two different components of G - C. Note that since branch sets induce a

connected graph in G, any branch set crossing C must contain a vertex in C. Because branch sets

are disjoint, at most ICI branch sets :ross C. In particular this implies that a graph G has a K.5

minor if and only if a 2-connected component of G contains a K5 minor. This observation extends

to 2-cuts, as the next theorem proves.

Suppose C C V(G) separates G into p (p 2_ 2) components Gl,...,Gp. For 1 < i < p, let

GC U K(C) be the graph obtained from G[V(Gi) U C] by adding an edge between any pair of non-

adjacent vertices in C. The graphs G1 u K(C),..., Gp u K(C) are called the augmented components

induced by C.

4



Theorem 2 Suppose H is a 3-connected graph, and G is a 2-connected graph with a 2-cut C. Then

G has an H minor if and only if some augmented component of G induced by C has an H minor.

Proof: Suppose some augmented component Gi U K(C) contains an H minor. To show that G

also Las an H minor, it suffices to show that the augmented component Gi U K(C) is a minor of

G. Consider a path P with internal vertices from V(G) - V(Gi) - C connecting the two vertices in

C; such a path must exist since G is 2-connected. The graph obtained from G[V(G) U C U V(P)]

by contracting the edges in the path P is the desired minor isomorphic to Gi U K(C).

On the other hand, suppose that some 3-connected graph H is a minor of G. Let C be a

2-cut of G. We must show that some augmented component of G induced by C contains an H

minor. Consider the branch sets of H in G. Observe that at most two of these branch sets cross

C. If two branch sets are completely contained in different components of G - C, then H has a

cut consisting of those vertices whose branch sets cross C, contradicting that H is 3-connected.

Hence, we may assume that there is one component of G - C, say Gi, that completely contains all

non-crossing branch sets. Finally, replace any crossing branch set B with B n (V(GC) U C). The

resulting collection of branch sets form an H minor in Gi U K(C). 0

The ideas in the previous proof can be extended to 3-cuts provided that the 3-cuts are strong.

The following theorem presents the extension needed.

Theorem 3 Suppose G is a 3-connected graph with a strong 3-cut C. Then G has a Ks minor if

and only if some augmented component of G induced by C has a K 5 minor.

Proof: Let G1, G2,..., Gp, p _ 3 be the components of G-C. Suppose some augmented component

induced by C contains a K 5 minor. We may assume that G, U K(C) contains a K 5 minor. To

show that G also has a K5 minor, it suffices to show that the augmented component G, u K(C) is

a minor of G. Because G is 3-connected, there is a set of three disjoint paths in G[V(G 2 U C)] from

v E G 2 to C. The paths can be contracted in G to produce two edges among the vertices of C. If

C induces a clique in this minor of G, then G1 U K(C) is a minor of G. Otherwise, let z and y be

the only non-adjacent vertices of C in this minor. Consider a path P with internal vertices from

V(G 3 ) connecting z and y; such a path must exist since G is 3-connected. Contracting the edges
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in the path P now yields a minor of G containing G1 u K(C).

In the other direction, suppose G contains a Ks minor. Consider the branch sets determined

by this minor. At most three of these branch sets cross C. If two branch sets are entirely contained

in different components of G - C, then Ks contains a cut consisting of those vertices whose branch

vertices cross C contradicting the 4-connectivity of K3. Therefore, some component of G-C, say Gi,

contains every non-crossing branch set. Replace every crossing branch set B with B n (V(G1 ) u C).

The resulting collection of branch sets form a K5 minor in G, U K(C). r3

The previous results suggest the following recursion for he algorithm. Given a non-planar

graph, compute its connectivity. If its connectivity is at most two, recursively apply the algorithm

on the augmented components induced by a 2-cut. If its connectivity is at least three, recursively

apply the algorithm on the augmented components induced by a strong 3-cut. The difficulty is

that strong 3-cuts may not exist. The remainder of this section addresses this difficulty.

Observe that, by Kuratowski's Theorem, a non-planar graph with no Ks minor must contain

a homeomorph of K 3,3. Suppose S is a homeomorph of K3,3 in a 3-connected non-planar graph G.

Let {a, b, c} and {x, y, z} be the bipartition of the branch vertices of S corresponding to a 2-coloring

of K3,3. Branch vertices a, b, and c are red vertices; branch vertices z, y, and z are blue vertices.

For convenience, we define R = {a, b, c} and B = {x, y, z}. Paths in S connecting branch vertices

are branch paths and are denoted P1,, where u E R, v E B. For example, P.. denotes the branch

path of S connecting a and x. Each branch vertex v of S determines a set of three branch paths

incident to v called the branch-fan of S at v. Let F(v) represent the branch-fan of S at the branch

vertex v. A branch fan F(v) is an R-branch-fan or B-branch-fan according to whether v E R or

v E B. Branch paths with distinct endpoints are parallel. Note that two vertices in S are either

in the same branch-fan, or are interior vertices of parallel branch-paths. An interior vertex of a

branch path determines two branch vertices called branch-ends. For example, any interior vertex

w of the branch path P., has branch ends a and z.

Provided certain extra paths exist, a K, minor can be obtained from the homeomorph S of

K3,3. The following lemmas determine which extra paths are sufficient. There are two important

cases. For the first case, suppose there are two disjoint outside paths, one path between two vertices
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in {a,b,c} (say a and b) and the other between two vertices of {z,y,z} (say x and y). The union

of S with these two paths is a homeomorph of the L graph (see Figure 2.) The L graph has a K5

minor obtained by contracting the edge between the branch vertices of degree three. For the other

case, suppose there is an interior vertex v E P.. that has outside paths to b and y. The unions

of S and these two paths is a homeomorph of M (see Figure 3). The graph M has a K5 minor

obtained by contracting za and cz; the branch vertices are {v, (az), (cx), b, y}. By the transitivity

of the minor order, a graph that has an L or M minor has a K, minor. The strategy of the lemmas

is to produce either an L or M minor, by using a K 3 ,3 homeomorph and the additional structure

implied by the hypothesis of each lemma.

Lemma 1 Suppose G is a 3-connected graph containing a homeomorph S of K 3,3. If a vertex in

G - S has three outside paths to S with endpoints not all in the same branch-fan, then G contains

a Ks minor.

Proof: Let w be a vertex in G - S with three outside paths to S having endpoints t, u, and v

such that t, u, v are not contained in one branch-fan. We may assume that the outside paths from

w to S are disjoint because otherwise we can contract w toward their intersections. At least one

of t,u, or v must be an interior vertex of a path in S, otherwise they would necessarily be in the

same branch-fan. For example, if {t,u,v} = {a,x, y} then they are all in F(a). Without loss of

generality, let t be an interior vertex of P._. Vertices u and v cannot both be in F(a) since t is in

F(a); similarly u and v cannot both be in F(x). Now there are three cases to consider:

Case 1: {u, v) n (F(a) U F(z)) = 0. That is, neither u nor v is in the same branch fan as t. In

this case, u and v must be interior vertices of branch paths of S, If u and v appear on different

branch paths of 5, then contracting u to its blue branch end, contracting v to its red branch end,

and contracting to to t produces a graph containing an M minor. So we may assume that u and

v appear on the same branch path, say Pbt. We may further assume that the order of vertices on

Pby is b,u,v,y. Contract u to b and v to y along Pby, and contract ws to t along the outside path

connecting them. These contractions produces a graph homeomorphic to M (see Figure 4). Hence,

G contains a Ks minor.
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Case 2: {u, v) nl P,x 0 0. Without loss of generality, let u E P.,. Because both t and u are in

F(a) n F(x), we may assume that v an interior vertex of Pby. By switching the labels of v and t,

this reduces to the previous case.

Case 3: {u, v) n (F(a) u F(z) - P,) # 0. Without loss of generality, assume u E F(x) - Po.; by

relabeling b and c if necessary, we may assume that u E Pbz. In this case v cannot be in F(x), and

so must be in F(y) - {b, c} or F(z) - {b, c}. Contract u to b along Pb. and, contract v to its blue

branch end (either y or z) along the branch path of S containing v. Because these contractions

occur along distinct branch paths of S, no conflicts occur. Now contract w to t along the outside

path connecting them. All of these contractions form a homeomorph of M (see Figure 5). Hence,

Ks is a minor of G. 0

Lemma 2 Let S be a K 3,3 homeomorph in a 3-connected graph G. Suppose there exists an outside

path with endpoints in distinct branch-paths of an R-branch-fan, and there is an outside path with

endpoints in distinct branch-paths of a B-branch-fan. Then G contains a K 5 minor.

Proof: Let Pi be the outside path with endpoints in an R-branch-fan, and let P2 be the outside path

with endpoints in a B-branch-fan. Without loss of generality, we may assume that the endpoints

of P1 are in F(a), and the endpoints of P2 are in F(x). Since the endpoints must be in different

branch paths, the vertex a is not an endpoint of P and z is not an endpoint of P2. We now consider

two cases depending on whether P and P2 intersect.

Case 1: P and P2 do not intersect. Contract each endpoint of P to its corresponding blue

branch end. Similarly, contract each endpoint of P2 to its corresponding red branch end. If these

contractions involve distinct vertices, then this produces a homeomorph of L, hence a K 5 minor, in

G (see Figure 6). If the contractions are not disjoint, then P and P2 have endpoints in the same

branch path. Because P is in F(a) and P2 is in F(z) this implies that P and P2 have an endpoint

in P.X, say u E P, n P.,, and v E P2 n P.. Because the endpoints of P, and P2 are in distinct

branch paths, both u and v are interior vertices of P.. In this case, the following contractions

produce a homeomorph of M in G: contract u to v along P,,, contract the other endpoint of P

to its blue branch end, and contract the other endpoint of P2 to its red branch end.

8



Case 2: P and P2 intersect. If P and P2 intersect in a vertex u E G - S, then Lemma 1 applies

since u then has three outside paths to S with endpoints not all in the same branch fan. Hence,

we may assume that P and P2 only intersect in a vertex of S, which must be an interior vertex of

Pa:. The other endpoints of P and P2 must be different because P, and P2 end in distinct branch

paths of different branch fans. Contracting the other endpoint of P to its blue branch end, and

contracting the other endpoint of P2 to its red branch end, produces a homeomorph of M. Hence

G contains a K5 minor. 0

Lemma 3 Let S be a K 3,3 homeomorph in a 3-connected graph G. Suppose there are two outside

paths of S such that one path connects two interior vertices of parallel branch-paths of C and the

other path connects two vertices in S in distinct branch-paths. If the two paths do not have the

same two endpoints in S, then G contains a K5 minor.

Proof: Let P be the path that connects two interior vertices of parallel branch-paths of S,

and let P2 be the path that connects two vertices in S in distinct branch-paths. Without loss of

generality, assume P1 ends in P.Z and Pbv. As in the previous lemma, if P and P2 intersect in a

vertex u E G - S, then Lemma 1 applies since u has three outside paths to S consisting of those

fragments of P and P2 that connect u to S and that have distinct endpoints in S. It remains to

consider the following two cases:

Case 1: The endpoints of P, and P2 are in distinct branch paths. Without loss of generality,

assume that the endpoints of P2 have distinct red branch ends. In this case, contract the endpoints

of P to their corresponding blue branch ends (z and y), and contract the endpoints of P2 to their

corresponding red branch ends. The resulting minor of G contains a homeomorph of L (see Figure

7).

Case 2: At least one endpoint of P and P2 are in the same branch path. Without loss of generality,

assume one endpoint of P2 is in P,. If this endpoint is a branch vertex of S, then the contractions

in the previous paragraph produce a minor of G containing a homeomorph of L. Hence we may

assume that this endpoint of P2 is an interior vertex of P4 ,. If the endpoints of P and P2 in P.,

are distinct, contract the endpoint of P in P._ to the endpoint of P2 in P., along Paz. If the

other endpoints of P and P2 appear on different branch paths of S, then contract one of them

9



to it blue branch end and contract the other to its red branch end. This produces a minor of G

containing a homeomorph of M. If the other endpoints both appear on -Pb, then contract the

endpoint nearest b to b along P, and contract the other endpoint to y along Pbv. The result is a

minor of G homeomorphic to M (see Figure 8). G

Lemma 4 Let S be a homeomorph of K 3,: in G. Let a, b, and c be the red branch vertices of S,

and let z,y, and z be the blue branch vertices of S. If neither {z, y,z} nor {a,b,c} is a 3-cut of G,

then G contains a Ks minor.

Proof: Because {a, b, c) is not a cut of G, there is a path P, from x to y avoiding vertices in

{a, b, c}. Let u1 be the vertex in Pzy n F(z) furthest away from x along Py (u, may equal z). Let

vi be the next vertex of P., after ul that is in S. The subpath P1 of P_, connecting ul to v, is an

outside path of S, and its endpoints are not contained in any one branch path because this would

imply that vi is in F(z), contradicting the choice of ul. Indeed this argument shows that ul and

v, are in different blue branch fans. Suppose, without loss of generality, that vl E F(y).

To each of ul and v, there corresponds a single red branch end; hence there is a red branch

vertex, say c, that is not the red branch end of either ul or vj. Because {x, y, z} is not a cut of

G, there is a path Pb from c to b avoiding vertices in {z, y, z). Let U2 be the vertex in Pb n F(c)

furthest away from c along Pcb (u2 may equal c). Let t2 be the next vertex of Pcb after U2 that

appears in S. The subpath P2 of Pdb connecting U2 to v 2 is an outside path of S, and its endpoints

are not contained in the same red branch fan. Furthermore, u2 0 {Ul,VI}, since c is not a branch

end of either of ul or vj.

If ul and v, are contained in parallel branch paths, then by Lemma 3, K5 is a minor of G.

This means that ul and v, are in the same red branch fan. A similar argument applies if U2 and

v2 are contained in parallel branch paths. Hence, U2 and v2 are in the same blue branch fan. This

reduces to to Lemma 2, and G contains a K, minor minor. 0

The following known result is an easy corollary of the above lemma (see, for example, a proof

by Young [You71]).

Corollary 1 If G is 4-connected and non-planar, then G contains a K5 minor.
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Before we present the main structural theorem, we require a lemma on graphs containing a W

homeomorph.

Lemma 5 Suppose G contains a W homeomorph T, and there ezists a path in G outside T that

has endpoints in distinct branch paths of T. Then G contains a K5 minor.

Proof: Let W U e denote any graph formed by adding an edge to W. Observe that any W U e

graph contains a Ks minor. Let path P be an outside path of T, with endpoints in distinct branch

paths of T. In all cases, T U P is contractible to W U e. C3

We now come to our characterizing theorem. Wagner was the first to provide a characterization

of graphs containing no Ks minor, which he applied to prove the equivalence of the Four Color

Theorem and the Hadwiger conjecture for k = 5 [Wag37bJ,[Wag60J. A clique-sum of graphs G

and H is obtained by identifying the vertices of a clique in G and H together, and removing some

(or none) of the edges in the clique. Note that this is the roverse of our notion of augmented

components.

Theorem 4 (Wagner) Every graph with no K5 minor may be obtained by means of clique-sums,

starting from planar graphs and copies of W.

Seymour [Sey8l] describes Wagner's result, and Young [You71] presents an alternative proof of

the equivalence theorem. Halin [Ha67] elaborated on Wagner's methods, and in doing so made

an observation closer to our own characterization: Any graph G must have either a K5 minor, a

subdivision of W, or a strong 3-cut. The following theorem refines HaHn's observation, and is also

another method of obtaining Wagner's characterization.

Theorem 5 Suppose that G is a 3-connected graph containing a K3,3 homeomorph S with red

branch vertices a, b, c and blue branch vertices z, y, z. Then at least one of the following must hold:

1. G contains a K 5 minor.

2. {a, b, c} separates G such that z, y, and z are in three separate components.
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3. {z, y, z} separates G such that a, b, and c are in three separate components.

4. G is isomorphic to W, an 8-cycle with cross edges.

Proof: Let G be a 3-connected graph containing a homeomorph S of K 3,3 , with red branch

vertex set R = {a, b, c) and blue branch vertex set B = {z, y,z}. We prove the theorem by

supposing that conditions two and three do not hold, and showing that this forces a K5 minor in

all cases except when G is isomorphic to W.

Lemma 4 guarantees that if G does not contain a K5 minor, either G - B or G - R is

disconnected. By symmetry, we may assume G - B is disconnected. Because a, b, and c are

not all in different components of G - B, two of them, say b and c, are in the same component

of G - B. Let Pbc be a path connecting b to c in G - B. Let ul be the vertex in Pb, n F(b)

furthest from b along Pbc, and let v, be the next vertex in S after ul along Pbe. The subpath P

of Pbc connecting ul to v, is an outside path. By the choice of ul, V, is not in F(b). Because a is

disconnected from b and c in G - B, v, it F(a). Hence, vi E F(c) - B and ul E F(b) - B. Similarly,

because z, y, and z are not all in different components of G - R, at least two of them, say y and z,

are in the same component of G - R. Let P., be a path connecting y to z in G - R. Let U2 be the

vertex in P.. n F(y) furthest from y along P,,, and let v2 be the next vertex in S after u2 along

P,-. The subpath P2 of P., connecting u2 and v2 is an outside path of S, with U2 E F(y) - R and

v2 E (F(z) U F(z)) - R.

Thus we have two outside paths P, and P2 . Observe that the endpoints of P appear in distinct

branch paths of S; likewise, the endpoints of P2 appear in distinct branch paths of S. If ul and v,

are contained in a B-branch-fan, and if U2 and v2 are contained in an R-branch-fan, then Lemma

2 implies that Ks is a minor of G. Otherwise, P and P2 must both connect parallel branch-paths

of S. If {u1 , v1 } # {U 2 , v2 }, and at least one of P1 or P2 connects two interior vertices of parallel

branch-paths of S, then G contains a K 5 minor by Lemma 3. Therefore, if G does not contain

a K 5 minor, then {ul, v1 } = {U2, v21 and, P and P2 connect the same interior vertices of one

pair of parallel branch paths of S, say P4, and P,. Suppose that P contains an interior vertex

v V {ul, vi. By the 3-connectivity of G, v has three disjoint paths to S. Moreover, the existence

of P guarantees that these three disjoint paths can be chosen so that all of them do not end in the
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same branch path of S. In this case, Lemma 1 guarantees that G contains a K5 minor. Therefore,

we may assume that P has no interior vertices; that is, P is the edge ulv. The same argument

applies to P2, so that P = P2 is a single edge.

Let T = SuP1 . Note that T is a homeomorph of W. We now show that G is isomorphic to W,

first by showing that G[T] is isomorphic to W, then by showing G - T is empty. Suppose branch

path Pt, joining branch vertices s and t in T, contains an interior vertex r. Since G is 3-connected,

there is a path 0 in G - {, t} from r to some vertex in T - Pt. Let q be the vertex in Pvt n 0

furthest from r along 0, and let q2 be the next vertex in T after q along 0. Let Q be the subpath

of 0 from q, to q2. The path Q and the W homeomorph T in G satisfy the conditions of Lemma

5. Hence Ks is a minor of G, unless G[T] is isomorphic to W and contains no subdivided paths.

It remains to show that there are no vertices in G - T. Suppose there is a vertex w in G - T.

Because G is 3-connected, there are three vertex-disjoint paths from w to three vertices x, y, and z,

in T. At least two endpoint vertices in T, say z and y, are non-adjacent, because W (and hence T)

contains no K 3 subgraph. From the paths from to to z and y, we can construct a path P,,, outside

T, so that P_, and T satisfy the hypothesis of Lemma 5. Thus there are no vertices in G - T if Ks

is not a minor of G. Hence G is isomorphic to W. 0

4 The algorithm

In this section we present an algorithm that determines whether a graph has a Ks minor and returns

a model of the minor if it exists. The algorithm Find-Ks-minor runs in O(n 2) time. Applying

Theorems 1 and 2, Find-Ks-minor quickly reduces to the consideration of 3-connected augmented

components with at most 3n- 6 edges. The crux of the algorithm is the application of Williamson's

algorithm [Wil84] that, given a graph G, determines whether G is planar and, if G is non-planar,

returns a Kuratowski homeomorph - either Ks or K3,3 . If Williamson's algorithm determines

that G is planar or returns a K5 homeomorph, then the algorithm is done. In the remaining case,

Williamson's algorithm returns a K 33 homeomorph S. The algorithm checks whether the red or

blue branch vertices of S are a strong 3-cut of G separating the other color class into three separate

components. If so, the algorithm recursively determines whether the augmented components formed
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by the strong 3-cut contain a Ks minor. If not, then by Theorem 5, G is isomorphic to W, or G

contains a K5 minor. If G is not isomorphic to W, the algorithm calls the algorithm Construct-Ks-

model, described below. Construct-Ks-model constructs and returns the branch sets of a model of

a Ks minor in G, constructively applying the proofs of the structural results.

Algorithm: Find-Ks-minor

INPUT: A graph G, with n = IVI vertices, and m = IE edges.

OUTPUT: Either report that G does not contain a Ks minor, or return a model of a K'S minor in

G.

1. Determine whether m > 3n - 5. If so, find a model of a Ks minor using the algorithm

described after the proof of Theorem 1.

2. If any vertex v is a 1-cut of G, then recursively apply Find-Ks-minor on each augmented

component of G - v. Return the model of a K5 minor found in any augmented component

or, if all augmented components report no K5 minor, report that there is no K5 minor in G

and halt.

3. If there is a 2-cut {u, v) in G, then recursively apply the algorithm on each augmented

component of G- {u, v}. Return the model of a Ks minor found in any augmented component

or, if all augmented components report no Ks minor, report that there is no K5 minor in G

and halt.

4. Apply the Williamson algorithm to test planarity. If G is planar, then report that G does

not contain a K 5 minor and halt. If Williamson's algorithm returns a KS homeomorph, then

return this homeomorph and halt. Otherwise, let S be the K 3,3 homeomorph returned by the

algorithm. Proceed to the next step.

5. Test whether G is isomorphic to W. If G 9! W, report that G has no K5 minor and halt.

Otherwise proceed to the next step.

6. Determine whether the red (blue) branch vertices R (B) of S separate the blue (red) branch

vertices into 3 separate components. If so, then recursively apply Find-K5 -minor to each

augmented component of G - R (G - B). Otherwise proceed to the next step.
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7. If this step is reached, then by Theorem 5 G must contain a Ks minor. Apply the algorithm

Construct-Ks-model, described below. The algorithm is given G and the K3,3 homeomorph

S, and returns the model of the Ks minor in G. (For the decision algorithm, it is enough to

report that a KS minor exists.)

Theorem 1 confirms the correctness of step 1. When the algorithm operates on several aug-

mented components of G, then the algorithm returns a model of a Ks minor in G if and only if

there is a KS minor (returned) in some augmented component of G. Theorems 2 and 3 provide

proof of the correctness of the recursions in steps 2, 3 and 6. The correctness of Williamson's

algorithm verifies the correctness of step 4. By Theorem 5, either the conditions tested in steps

5 and 6 hold, or there is a Ks minor in G, as assumed in step 7. Thus, at least for the decision

algorithm, Find-Ks-minor determines there is a KS minor in G if and only if Ks is a minor of G. To

prove the correctness of the overall algorithm Find-K&-minor, it remains to describe the algorithm

Construct- K5-minor.

Algorithm: Construct-K5-model.

INPUT: A 3-connected graph G that is not isomorphic to W and contains a K3,3 homeomorph S

with branch vertices fa, b, c,z, y, z}, such that neither the red branch vertices (a, b, and c) nor the

blue branch vertices (z, y, z) of S form a strong 3-cut separating the other color class into different

components.

OUTPUT: A model of a Ks minor in G.

1. Determine the components of G- {a,b,c) and G- {z,y,z), to establish which branch vertices

of S are in the same induced components. Without loss of generality, suppose b and c are in

the same component of G - {z, y, z} and y and z are in the same component of G - {a, b, c}.

Construct a bc-path Pk in G - {z, y, z4, and construct a subpath P, from Pb,, starting at the

vertex furthest from b along Pb that intersects F(b) and ending with the next vertex of P4,

in S, that is, in F(c). Construct a yz-path P,. in G - {a,b,c). Construct path P2 from P,,

starting at the vertex furthest from y along P,, that intersects F(y) and ending at the next

vertex of P,, intersecting S, that is, in F(z). Both P and P2 are outside paths of S, and

neither path joins vertices on the same branch path of S.
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2. Determine whether P and P2 have the same endpoints in S. If P and P2 do not share both

endpoints, then proceed to the next step. Otherwise, test to determine whether PI and P2

have any interior vertices. If either path has an interior vertex, proceed to step 4. If not,

then P and P2 are both the same edge - proceed to step 5.

3. Determine whether at least one of P and P2 joins vertices in a parallel path. If so, construc-

tively apply the proof of Lemma 3 to find and return the model of the K5 minor. Otherwise,

P joins vertices in distinct branch paths of a red branch-fan, since it cannot be within a blue

branch-fan; likewise, P2 joins vertices in distinct branch paths of a blue branch-fan. Construct

and return the model of the Ks minor using the proof of Lemma 2.

4. In this case, paths P and P2 have the same endpoints, {u,v}, and at least one path, say

P1, has an interior vertex w. Construct a path, in G - {u,v}, from w to some vertex t in

S - {u, v}. The paths from w to {t, u, v} in S satisfy the conditions of Lemma 1. Apply the

proof of that lemma to construct and return a model of the K5 minor in G.

5. In this case, P, = P2 is an edge between u E Pv and v E P. LetT= SUP,; Tisa

homeomorph of W. Test to see if G[T] is isomorphic to W. If so, then proceed to step 7.

Otherwise, proceed to the next step.

6. In this case, some branch path of T is subdivided, or G[T] is isomorphic to W plus an edge.

In the latter case, it is easy to find and return the model of the Ks minor. In the former case,

suppose t is an interior vertex of a branch path, say P... Form a path 0 in G - {a,x}, from

t to any vertex in T - P._. Construct a subpath Q from 0, starting from the vertex furthest

from t along 0 in P.s, and ending at the next vertex of 0 in T. Construct the model of the

Ks minor from T and path Q, using the methods of Lemma 5.

7. In this case, G[T] is isomorphic to W but G is not, so there must be a vertex w in G - T.

Construct paths (they need not be disjoint) from w to 3 vertices in T. Construct a path P

outside T, joining non-adjacent vertices in T, as done in the proof of Theorem 5. Using the

path P and the methods of Lemma 5, construct and return the model of the K's minor.
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Construct-K s -model rests on constructively applying the proofs of the lemmas and theorems

of the previous section. However, each step of the constructive implementations of these proofs is

either a search for a particular type of vertex, or the construction of a particular path. All paths

are constructed using simple depth-first search methods, and the application of the proofs can all

be implemented in linear-time. Thus, the algorithm Construct-Ks-model requires 0(n) time.

14.1 Complexity analysis of Find-Ks-minor

The algorithm Find-Ks-minor proceeds by a divide and conquer method. The major problem with

the 'divide and conquer' is that the algorithm divides the problem into subproblems of undetermined

size. For example, a strong 3-cut may divide the graph into one augmented component of order

n - 2 and two augmented components of order four.

i Step one of the algorithm first tests to determine whether m > 3n - 5; this takes linear time.

If m > 3n - 5, then the algorithm described after the proof of Theorem 1 constructs the model of

the Ks minor in 0(n 2) time. We may obtain all 1-cuts in linear time [Tar72], and the algorithms

of Hopcroft and Tarjan [HT73] or Miller and Ramachandran [MR88] can be used to obtain 2-cuts

in linear time. The application of Williamson's algorithm requires 0(n) time. If Williamson's

algorithm returns a Ks homeomorph or reports that the graph is planar, we are done. Otherwise.

we have a K3,3 homeomorph, and we test the condition of Theorem 5. Testing if G is isomorphic

to W is a constant-time operation. In step 6, we determine whether z, y, and z (a, b, and c) are

pair-wise in distinct components of G - {a,b,c) (G - {z, y, z}), by applying depth-first search on

the appropriate subgraphs. This requires 0(n) time. In step 7, we implement construct-Ks-model.

in 0(n) time.

If the algorithm does not make any recursive calls in processing a graph, it requires 0(n) time.

If it makes a recursive call in the second or third step, then the recursion for a graph of order n is:

T(n) = T(n) + T(n - n, + 1) + cn

The value cn indicates the linear time required to count edges and find cuts. the previous steps

of the algorithm prior to the recursive call. For the recursion of step 6, we may restrict V-.-
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consideration in this case to a recursion on exactly three subproblems, since additional augmented

components induced by the cut could be combined with the third component in a recursive call.

T(n) = T(ni) + T(n 2) + T(n - n4 - n2 + 6) + c'n

The value c' indicates the linear time required to count edges, find cuts, test planarity, and test

for a strong 3-cut in the K3,3 homeomorph. Variables n1 , n2 and n - nj - n 2 + 6 indicate the

size of each augmented component, that is, the size of the subproblems upon which the recursive

algorithm is applied. The values are bounded by

4 < n, n2,n- n1 - n2 + 6 < n - 2

The recurrences imply a worst-case complexity of n 2 .

Theorem 6 The algorithm Find-K5 -minor has complexity 0(n 2 ).

To see how the recurrence might require kn 2 steps, consider the case where both nj and n2

are minimum, i.e., size 4. Then the recurrence becomes T(n) = 2T(4) + T(n - 2) + cn , and

the best that T(n) can do in this case is T(n) = 0(n 2 ). One might hope that, in general, the

case of obtaining the K5 minor from the K3,3 would not require 0(n) iterations of finding a K3.3

homeomorph, that perhaps one bad iteration might balance with a good one, or that graphs couldn't

have the form implied by the worst-case recurrence. However, consider the graph in Figure 9. Two

vertices axe attached to a set of three vertices in the grid. Those three vertices are a strong 3-

cut. The Williamson algorithm might return a K3,3 homeomorph that has the three vertices of

the attachment as the branch vertices. Then the recursion would be on a subgraph with only

two vertices deleted and two subgraphs of order four; this is the recursion stated earlier in the

paragraph.

There are further reasons to suspect that the 0(n 2 ) complexity for finding a Ks minor would

be difficult to improve. While the K3,3 homeomorph algorithms ([Asa85], [FP]) have linear-time

implementations, they depend on a characterization of a graph into triconnected components.

Here, the characterization is a decomposition into components induced by strong 3-cuts. But the

general problem of finding all separating 3-cuts in a graph currently requires 0(n 2 ) [KR87] (while
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triconnectivity algorithms can be accomplished in linear time). The best way to improve this

algorithm would be to improve methods for finding all strong 3-cuts in a graph.

5 Conclusion

The corresponding problem of finding a Ks homeomorph in a graph seems far less tractable. Indeed,

since these sorts of algorithms hinge on characterizations of graphs that do not contain the given

substructure, it is pertinent to ask whether any such characterization has been obtained for graphs

that do not contain a K5 homeomorph. The situation in that area is bleak, although work by the

authors (KM] is a small advance in this area.
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Figure 1: The graph W.

Figure 2: The graph L.
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Figure 3: The graph M.

(wt)

a x a- X

b y < -MMN (bu) (vy)

C z C> z

Figure 4: Lemma 1 case 1, with vertices u and v in Pby.
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(tw)

ua

b Y NW (bu) Y

v

c z C (zv)

Figure 5: Lemma 1 case 3, with vertex u in Pbz and v in Pbz.

P1

a x -X

b y - b y

C z Cz

Figure 6: Lemma 2, case 1. Paths P, and P2 contract to branch ends without conflict.
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ja -~x a
P1

Ib ~ ~y =M- b y

IC z c z

Figure 7: Lemma 3, case 1. Paths P1 and 2 have endpoints in distinct branch paths.

a F,-d- xa x

IP
b P2 --- y umw (bu)xX (yv)

U V

IC zw IF Z

Figure 8: Lemma 3 case 2: Contract to form a horneomorph of M.
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I Figure 9: A graph that may require 0(n) decomposition iterations.
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